Ectomycorrhizal Fungal Protein Degradation Ability Predicted by Soil Organic Nitrogen Availability.
نویسندگان
چکیده
In temperate and boreal forest ecosystems, nitrogen (N) limitation of tree metabolism is alleviated by ectomycorrhizal (ECM) fungi. As forest soils age, the primary source of N in soil switches from inorganic (NH4 (+) and NO3 (-)) to organic (mostly proteins). It has been hypothesized that ECM fungi adapt to the most common N source in their environment, which implies that fungi growing in older forests would have greater protein degradation abilities. Moreover, recent results for a model ECM fungal species suggest that organic N uptake requires a glucose supply. To test the generality of these hypotheses, we screened 55 strains of 13 Suillus species with different ecological preferences for their in vitro protein degradation abilities. Suillus species preferentially occurring in mature forests, where soil contains more organic matter, had significantly higher protease activity than those from young forests with low-organic-matter soils or species indifferent to forest age. Within species, the protease activities of ecotypes from soils with high or low soil organic N content did not differ significantly, suggesting resource partitioning between mineral and organic soil layers. The secreted protease mixtures were strongly dominated by aspartic peptidases. Glucose addition had variable effects on secreted protease activity; in some species, it triggered activity, but in others, activity was repressed at high concentrations. Collectively, our results indicate that protease activity, a key ectomycorrhizal functional trait, is positively related to environmental N source availability but is also influenced by additional factors, such as carbon availability.
منابع مشابه
Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus
Boreal trees rely on their ectomycorrhizal fungal symbionts to acquire growth-limiting nutrients, such as nitrogen (N), which mainly occurs as proteins complexed in soil organic matter (SOM). The mechanisms for liberating this N are unclear as ectomycorrhizal fungi have lost many genes encoding lignocellulose-degrading enzymes present in their saprotrophic ancestors. We hypothesized that hydrox...
متن کاملEvidences on the Ability of Mycorrhizal Genus Piloderma to Use Organic Nitrogen and Deliver It to Scots Pine
Ectomycorrhizal (ECM) symbiosis has been proposed to link plant photosynthesis and soil organic matter (SOM) decomposition through the production of fungal enzymes which promote SOM degradation and nitrogen (N) uptake. However, laboratory and field evidence for the existence of these processes are rare. Piloderma sp., a common ECM genus in boreal forest soil, was chosen as model mycorrhiza for ...
متن کاملEctomycorrhizal-Dominated Boreal and Tropical Forests Have Distinct Fungal Communities, but Analogous Spatial Patterns across Soil Horizons
Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0-20 ...
متن کاملThe molecular components of the extracellular protein-degradation pathways of the ectomycorrhizal fungus Paxillus involutus
Proteins contribute to a major part of the organic nitrogen (N) in forest soils. This N is mobilized and becomes available to trees as a result of the depolymerizing activities of symbiotic ectomycorrhizal fungi. The mechanisms by which these fungi depolymerize proteins and assimilate the released N are poorly characterized. Biochemical analysis and transcriptome profiling were performed to exa...
متن کاملMycorrhizal fungi supply nitrogen to host plants in Arctic tundra and boreal forests: 15N is the key signal.
Symbiotic fungi's role in providing nitrogen to host plants is well-studied in tundra at Toolik Lake, Alaska, but little-studied in the adjoining boreal forest ecosystem. Along a 570 km north-south transect from the Yukon River to the North Slope of Alaska, the 15N content was strongly reduced in ectomycorrhizal and ericoid mycorrhizal plants including Betula, Salix, Picea mariana (P. Mill.) B....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 82 5 شماره
صفحات -
تاریخ انتشار 2015